The effects of processing inhibitors of N-linked oligosaccharides on the intracellular migration of glycoprotein E2 of mouse hepatitis virus and the maturation of coronavirus particles.

نویسندگان

  • R Repp
  • T Tamura
  • C B Boschek
  • H Wege
  • R T Schwarz
  • H Niemann
چکیده

We have studied the effects of tunicamycin and inhibitors of the processing of N-linked glycans including N-methyl-1-deoxynojirimycin, castanospermine, mannodeoxynojirimycin, and swainsonine on the transport of glycoprotein E2 and the intracellular maturation of the coronavirus mouse hepatitis virus A59. Indirect immunofluorescence staining with monoclonal antibodies revealed that glycoprotein E2 exhibits different antigenic properties depending on the presence and on the structure of the N-linked oligosaccharides and that efficient transport of glycoprotein E2 to the plasma membrane requires the removal of glucose residues. In the presence of tunicamycin in the nonglycosylated E2 apoprotein was synthesized in normal amounts and readily acylated throughout the infectious cycle. This E2-species could not be detected on the surface of mouse hepatitis virus A59-infected cells with indirect immunofluorescence staining or lactoperoxidase labeling. N-Methyl-1-deoxynojirimycin and castanospermine, both of which selectively inhibited the processing glucosidases, caused a drop in virion formation by two log steps and a drastic delay in the surface expression of glycoprotein E2. The E2 species synthesized under such conditions was acylated but accumulated intracellularly in a compartment distinct from the Golgi. Concomitantly, synthesis of the matrix glycoprotein E1 of mouse hepatitis virus A59 was drastically impaired. Mannodeoxynojirimycin and swainsonine, which block later stages of the processing pathway, had less or no effect on the transport of glycoprotein E2 and the formation of virus particles.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identification of Aptamer-Binding Sites in Hepatitis C Virus Envelope Glycoprotein E2

Hepatitis C Virus (HCV) encodes two envelope glycoproteins, E1 and E2. Our previous work selected a specific aptamer ZE2, which could bind to E2 with high affinity, with a great potential for developing new molecular probes as an early diagnostic reagents or therapeutic drugs targeting HCV. In this study, the binding sites between E2 and aptamer ZE2 were further explored. E2 was truncated to 15...

متن کامل

Interferon Resistance of Hepatitis C Virus Genotypes 1a/1b: Relationship to Structural E2 Gene Quasispecies Mutations

Hepatitis C virus (HCV) envelope glycoprotein-2 (E2) inhibits the interferon (IFN)–induced, double –stranded RNA activated protein kinase (PKR) via PKR eukaryotic initiation factor-2α phosphorylation homology domain (PePHD). Present study examined the genetic variability of the PePHD in patients receiving interferon therapy. The PePHD region from HCV genotype 1a/1b infected patients receiving I...

متن کامل

The evil role of spike in the coronaviruses: structure, function and evolution

1. Lu R, Zhao X, Li J, et al (2020) Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet 395:565–574 2. Zhou P, Tachedjian M, Wynne JW, et al (2016) Contraction of the type i IFN locus and unusual constitutive expression of IFN-α in bats. Proc Natl Acad Sci U S A 113:2696–2701 . doi: 10.1073/pnas.1518240113 3. Wu A, P...

متن کامل

Site of addition of N-acetyl-galactosamine to the E1 glycoprotein of mouse hepatitis virus-A59

By pulse-chase labeling with [35S]methionine and long-term labeling with 3H-sugars, the E1 glycoprotein of coronavirus MHV-A59 has been shown to acquire O-linked oligosaccharides in a two-step process. About 10 min after synthesis of the E1 protein, N-acetyl-galactosamine was added. This was followed approximately 10 min later by the addition of both galactose and sialic acid to give the mature...

متن کامل

Ammonium Chloride as a Potential Candidate for the Treatment and Controlling of Covid-19

Coronaviruses, pathogens with a zoonotic potential, are positive sense single-stranded RNA viruses. SARS Coronavirus-2, the cause of Covid-19 infection, is from the betacoronavirinea subfamily, which has close genomic and proteomic similarity to SARS Coronavirus-1(1). Given the genomic proximity of these two viruses, studies on SARS Coronavirus-1 can be used to control or detect SARS Coronaviru...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 260 29  شماره 

صفحات  -

تاریخ انتشار 1985